

Bio-integrated Materials Science (Online Lectures)

Metals and Ceramics Lecture 2

Prof. Jung Heon Lee

Structures of Metals & Ceramics

ISSUES TO ADDRESS...

- What is the difference in atomic arrangement between crystalline and noncrystalline solids?
- What features of a metal's/ceramic's atomic structure determine its density?
- How do the crystal structures of ceramic materials differ from those for metals?
- Under what circumstances does a material property vary with the measurement direction?

Energy and Packing

 Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy Dense, ordered packing Energy typical neighbor bond length typical neighbor bond energy

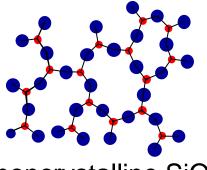
Dense, ordered packed structures tend to have energies.

Materials and Packing

- materials...
- atoms pack in periodic, 3D arrays
- typical of: -metals
 - -many ceramics
 - -some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures
 - -rapid cooling

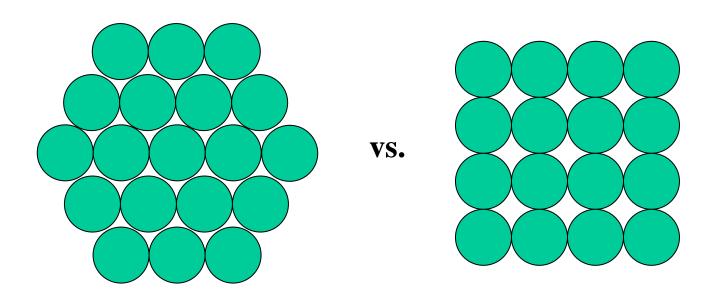

' = Noncrystalline

crystalline SiO₂
Adapted from Fig. 3.41(a),
Callister & Rethwisch 4e.

• Si

Oxygen

noncrystalline SiO₂

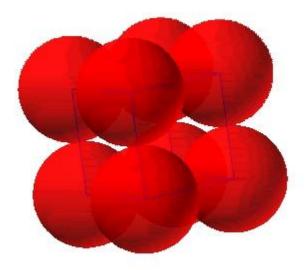

Adapted from Fig. 3.41(b), Callister & Rethwisch 4e.

Metallic Crystal Structures

 How can we stack metal atoms to minimize empty space?

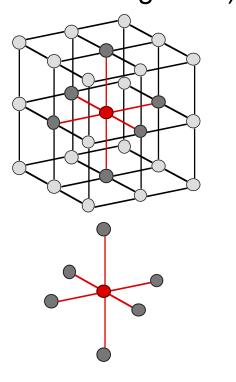
2-dimensions

Now stack these 2-D layers to make 3-D structures


Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be _____ in order to lower bond energy.
 - Electron cloud shields cores from each other
- Metals have the simplest crystal structures.

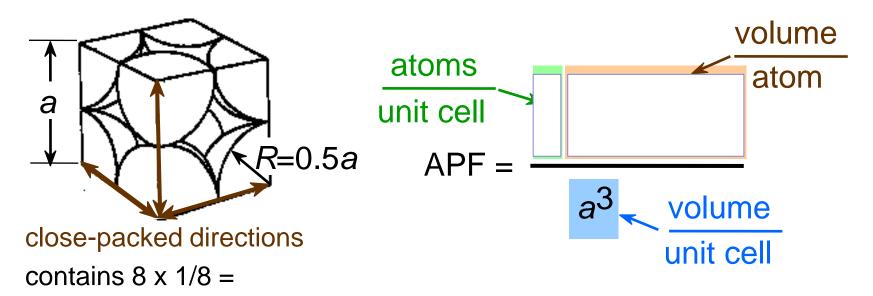
We will examine three such structures...


Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube

Click once on image to start animation (Courtesy P.M. Anderson)

Coordination # = (# nearest neighbors)

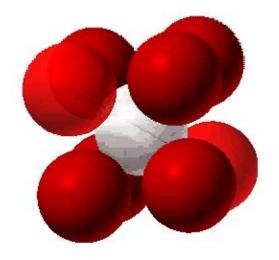

Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell*

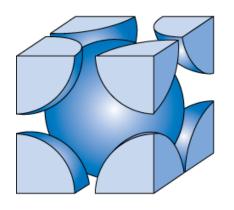
Volume of unit cell

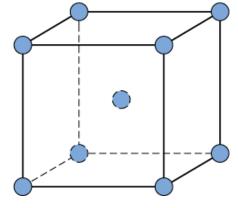
*assume hard spheres

• APF for a simple cubic structure = 0.52

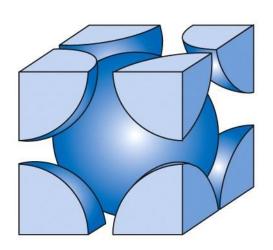

Body Centered Cubic Structure (BCC)

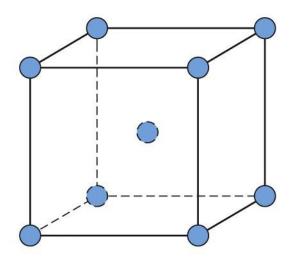
Atoms touch each other along cube


--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.


ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # =


Click once on image to start animation (Courtesy P.M. Anderson)



Adapted from Fig. 3.2, Callister & Rethwisch 4e.

2 atoms/unit cell: center + corners x

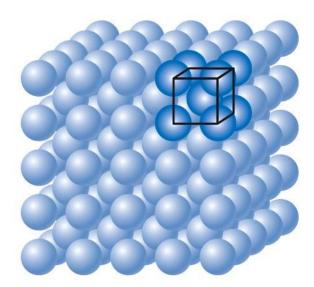
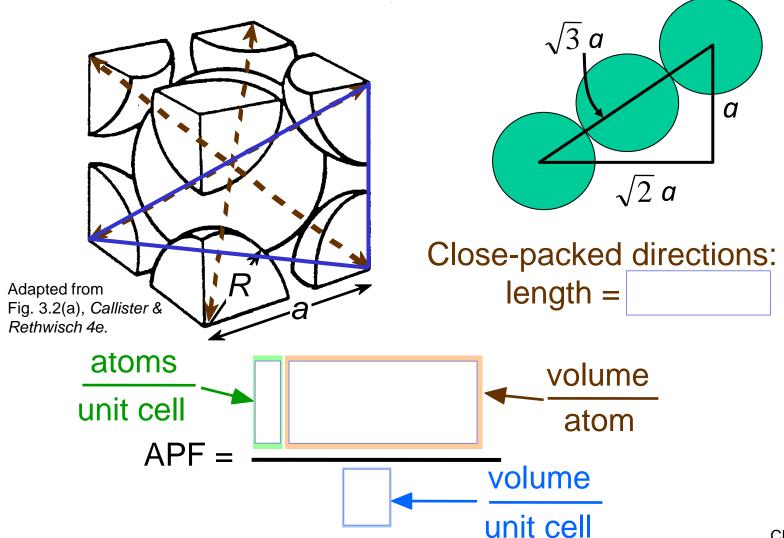
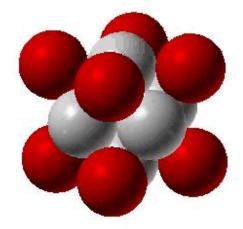



Figure 3.2 © John Wiley & Sons, Inc. All rights reserved.

Atomic Packing Factor: BCC

• APF for a body-centered cubic structure = 0.68


Face Centered Cubic Structure (FCC)

Atoms touch each other along

--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

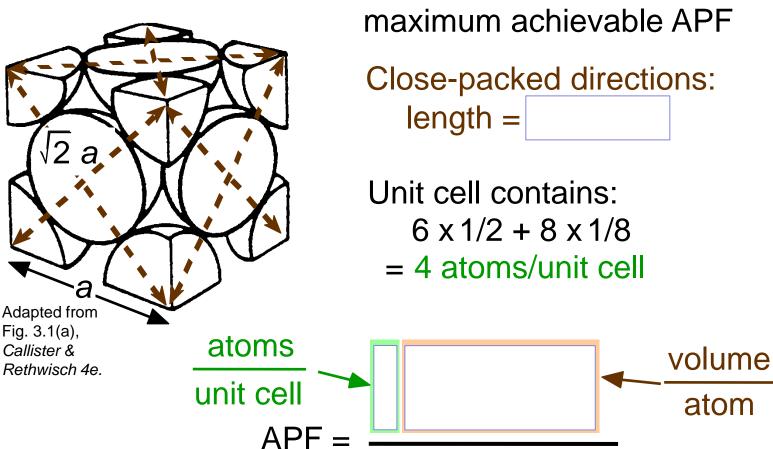
ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Coordination # =

Click once on image to start animation (Courtesy P.M. Anderson)

atoms/unit cell:

face x


+

corners x

Adapted from Fig. 3.1, Callister & Rethwisch 4e.

Atomic Packing Factor: FCC

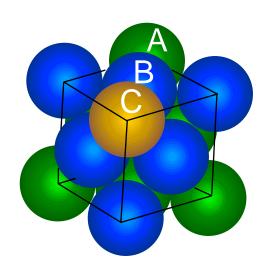
• APF for a face-centered cubic structure = 0.74

volume

unit cell

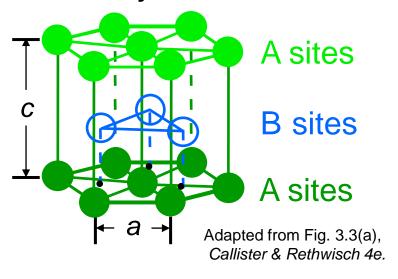
FCC Stacking Sequence

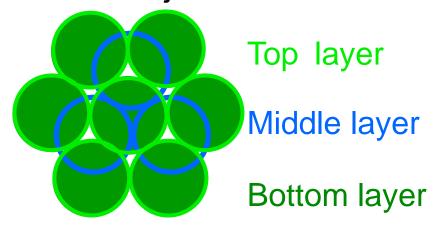
ABCABC... Stacking Sequence


• 2D Projection

A sites

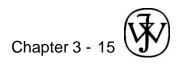
B sites

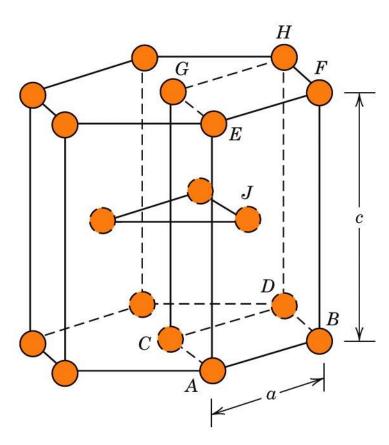

C sites



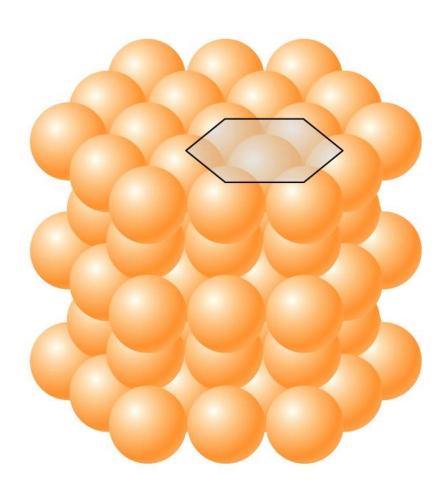
Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection


2D Projection



- Coordination # = 12
- APF = 0.74
- c/a = 1.633


6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

Theoretical Density, p

Density =
$$\rho = \frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$$

$$\rho = \frac{\rho}{\rho} = \frac{\rho}{\rho}$$

where n = number of atoms/unit cell

A = atomic weight

 V_C = Volume of unit cell = a^3 for cubic

 N_A = Avogadro's number

 $= 6.022 \times 10^{23} \text{ atoms/mol}$

Theoretical Density, p

Table 3.1
Atomic Radii and
Crystal Structures
for 16 Metals

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (α)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

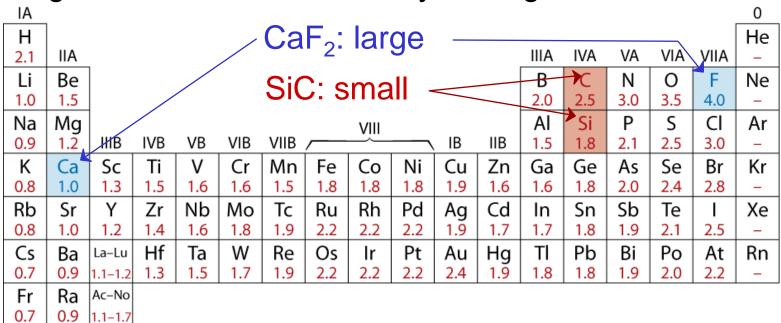

 $[^]a\mathrm{FCC} = \mathrm{face}\text{-centered cubic}; \mathrm{HCP} = \mathrm{hexagonal\ close-packed}; \mathrm{BCC} = \mathrm{body}\text{-centered\ cubic}.$

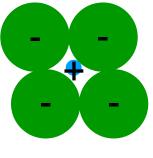
Table 3.1 © John Wiley & Sons, Inc. All rights reserved.

 $[^]b$ A nanometer (nm) equals 10^{-9} m; to convert from nanometers to angstrom units (Å), multiply the nanometer value by 10.

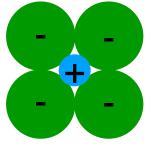
Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in of atoms.
- Degree of ionic character may be large or small:

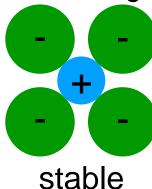
Ceramic Crystal Structures


Oxide structures

- oxygen anions larger than metal cations
- close packed oxygen in a lattice (usually FCC)
- fit into interstitial sites among oxygen ions


Factors that Determine Crystal Structure

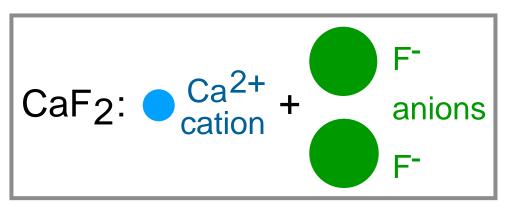
1. Relative of ions – Formation of stable structures:


--maximize the # of oppositely charged ion neighbors.

unstable

stable

Adapted from Fig. 3.4, Callister & Rethwisch 4e.


2. Maintenance of

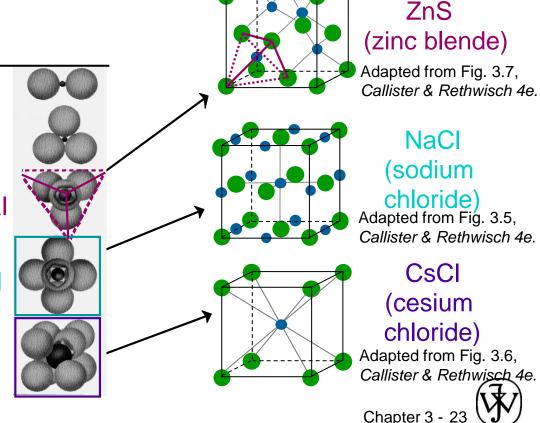
Neutrality:

--Net charge in ceramic should be zero.

--Reflected in chemical

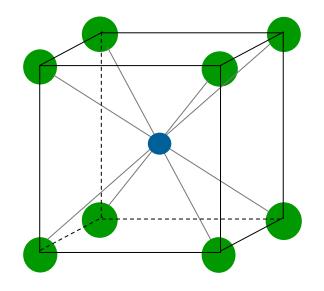
formula:

m, p values to achieve charge neutrality


Coordination Number and Ionic Radii

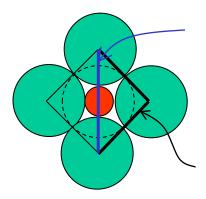
Coordination Number increases with

surround around a cation?


To form a stable structure, how many anions can

rcation Coord. ranion Number					
< 0.155	2	linear			
0.155 - 0.225	3	triangular			
0.225 - 0.414	4	tetrahedral			
0.414 - 0.732	6	octahedral			
0.732 - 1.0 Adapted from Table Callister & Rethwis		cubic			

Computation of Minimum Cation-Anion Radius Ratio


• Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for a cubic site (C.N. = 8)

Adapted from Fig. 3.6, Callister & Rethwisch 4e.

Computation of Minimum Cation-Anion Radius Ratio

Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for an octahedral site (C.N. = 6)

$$2r_{\text{anion}} + 2r_{\text{cation}} = 2\sqrt{2}r_{\text{anion}}$$

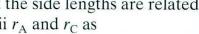
$$r_{\text{anion}} + r_{\text{cation}} = \sqrt{2}r_{\text{anion}}$$
 $r_{\text{cation}} = (\sqrt{2} - 1)r_{\text{anion}}$

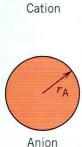
$$r_{\text{cation}} = (\sqrt{2} - 1) r_{\text{anion}}$$

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \boxed{\phantom{\frac{r_{\text{cation}}}{r_{\text{anion}}}}}$$

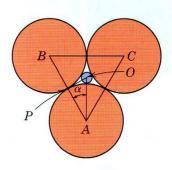
EXAMPLE PROBLEM 3.4

Computation of Minimum Cation-to-Anion Radius Ratio for a Coordination Number of 3


Show that the minimum cation-to-anion radius ratio for the coordination number 3 is 0.155.


Solution

For this coordination, the small cation is surrounded by three anions to form an equilateral triangle as shown here, triangle ABC; the centers of all four ions are coplanar.


This boils down to a relatively simple plane trigonometry problem. Consideration of the right triangle APO makes it clear that the side lengths are related to the anion and cation radii r_A and r_C as

$$\overline{AP} = r_{\Delta}$$

Orc

and

$$\overline{AO} = r_{\rm A} + r_{\rm C}$$

Furthermore, the side length ratio $\overline{AP}/\overline{AO}$ is a function of the angle α as

$$\frac{\overline{AP}}{\overline{AO}} = \cos \alpha$$

The magnitude of α is 30° because line \overline{AO} bisects the 60° angle BAC. Thus,

$$\frac{\overline{AP}}{\overline{AO}} = \frac{r_{A}}{r_{A} + r_{C}} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

Solving for the cation–anion radius ratio, we have

$$\frac{r_{\rm C}}{r_{\rm A}} = \frac{1 - \sqrt{3}/2}{\sqrt{3}/2} = 0.155$$

Bond Hybridization

Bond Hybridization is possible when there is significant covalent bonding

- hybrid electron orbitals form
- For example for SiC
 - $X_{Si} = 1.8$ and $X_C = 2.5$

% ionic character =
$$100 \{1 - \exp[-0.25()^2]\} = 11.5\%$$

- ~ 89% covalent bonding
- Both Si and C prefer sp³ hybridization
- Therefore, for SiC, Si atoms occupy tetrahedral sites

Table 3.2

Percent Ionic
Character of the
Interatomic Bonds
for Several Ceramic
Materials

Material	Percent Ionic Character		
CaF ₂	89		
MgO	73		
NaCl	67		
Al_2O_3	63		
SiO ₂	51		
Si_3N_4	30		
ZnS	18		
SiC	12		

Table 3.2 © John Wiley & Sons, Inc. All rights reserved.

Example Problem: Predicting the Crystal Structure of FeO

 On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation Ionic radius (nm)

$$AI^{3+}$$
 0.053
 Fe^{2+} 0.077
 Fe^{3+} 0.069

Ca²⁺ 0.100

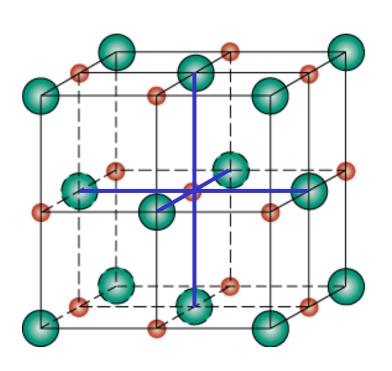
Anion

O ² -	0.140
CI-	0.181
F-	0.133

Answer:

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{r_{\text{cation}}}{r_{\text{anion}}}$$

based on this ratio,


-- crystal structure is NaCl

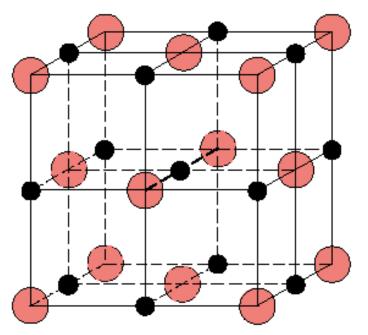
Data from Table 3.4, Callister & Rethwisch 4e.

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

$$o$$
 Na⁺ $r_{Na} = 0.102 \text{ nm}$

$$r_{Cl} = 0.181 \text{ nm}$$


$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

: cations (Na⁺) prefer octahedral sites

Adapted from Fig. 3.5, Callister & Rethwisch 4e.

MgO and FeO

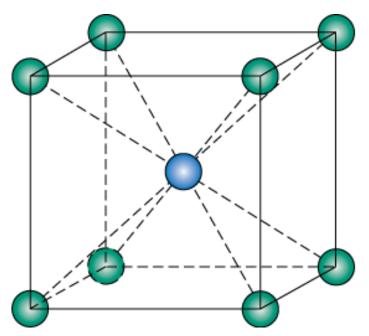
MgO and FeO also have the NaCl structure

O²⁻
$$r_{\rm O} = 0.140 \text{ nm}$$

•
$$Mg^{2+}$$
 $r_{Mg} = 0.072 \text{ nm}$

$$r_{\rm Mg}/r_{\rm O} = 0.514$$

: cations prefer octahedral sites


Adapted from Fig. 3.5, Callister & Rethwisch 4e.

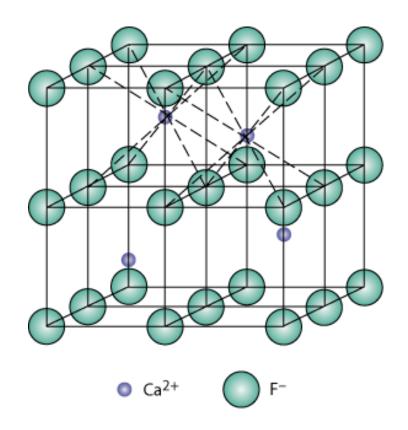
So each Mg²⁺ (or Fe²⁺) has 6 neighbor oxygen atoms

AX Crystal Structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

$$\frac{r_{\text{Cs}^+}}{r_{\text{Cl}^-}} = \frac{0.170}{0.181} = 0.939$$


∴ Since 0.732 < 0.939 < 1.0, cubic sites preferred

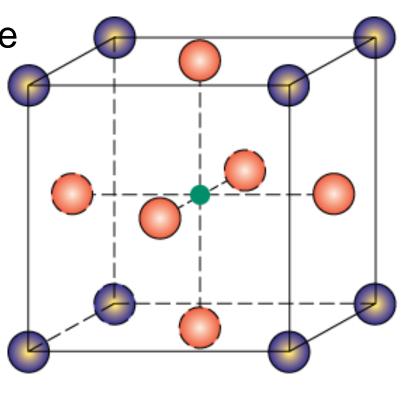
So each Cs⁺ has 8 neighbor Cl⁻

Adapted from Fig. 3.6, Callister & Rethwisch 4e.

AX₂ Crystal Structures

Fluorite structure

Adapted from Fig. 3.8, Callister & Rethwisch 4e.


- Calcium Fluorite (CaF₂)
- Cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- Antifluorite structure –
 positions of cations and
 anions reversed

ABX₃ Crystal Structures

Perovskite structure

Ex: complex oxide BaTiO₃

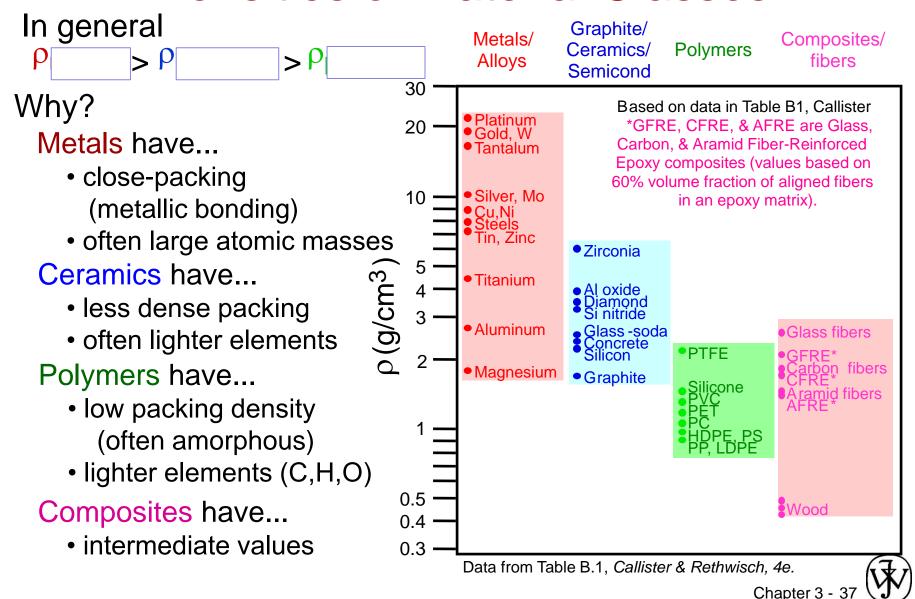
Adapted from Fig. 3.9, Callister & Rethwisch 4e.

Table 3.5 Summary of Some Common Ceramic Crystal Structures

	Structure Type	Anion Packing	Coordination Number		
Structure Name			Cation	Anion	Examples
Rock salt (sodium chloride)	AX	FCC	6	6	NaCl, MgO, FeO
Cesium chloride	AX	Simple cubic	8	8	CsCl
Zinc blende (sphalerite)	AX	FCC	4	4	ZnS, SiC
Fluorite	AX_2	Simple cubic	8	4	CaF ₂ , UO ₂ , ThO ₂
Perovskite	ABX_3	FCC	12 (A) 6 (B)	6	BaTiO ₃ , SrZrO ₃ , SrSnO ₃
Spinel	AB_2X_4	FCC	4 (A) 6 (B)	4	MgAl ₂ O ₄ , FeAl ₂ O ₄

Source: W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, *Introduction to Ceramics*, 2nd edition. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Table 3.5 © John Wiley & Sons, Inc. All rights reserved.


Density Computations for Ceramics

Number of formula units/unit cell

$$r = \frac{n(SA_C + SA_A)}{V_C N_A}$$
Avogadro's number
Volume of unit cell

 SA_{C} = sum of atomic weights of all cations in formula unit SA_{A} = sum of atomic weights of all anions in formula unit

Densities of Material Classes

Single Crystals

- When the periodic arrangement of atoms (crystal structure) extends without interruption throughout the entire specimen.
 - -- diamond single crystals for abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)

-- Quartz single crystal

-- single crystal for turbine blade

Fig. 9.42(c), Callister & Rethwisch 5e. (courtesy of Pratt and Whit@yapter 3 - 38

Polycrystalline Materials

• *Most* engineering materials are composed of many small, single crystals (i.e., are *polycrystalline*).

Contrest of Pant E. Danielson, Teledyne Wah
Chang Albany
I mm
Small
grain

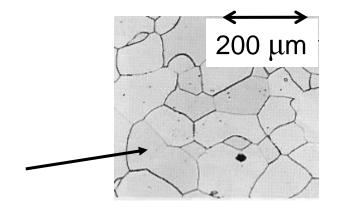
- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- Grain sizes typically range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Anisotropy

- Anisotropy Property value depends on crystallographic direction of measurement.
 - Observed in single crystals.
 - Example: modulus of elasticity (*E*) in BCC iron

E(edge) ≠ *E*(diagonal)

E (diagonal) = 273 GPa


$$E \text{ (edge)} = 125 \text{ GPa}$$

Unit cell of BCC iron

Isotropy

Polycrystals

- Properties may/may not vary with direction.
- If grains randomly oriented: properties (E_{poly iron} = 210 GPa)
- If grains textured (e.g., deformed grains have preferential crystallographic orientation):
 properties

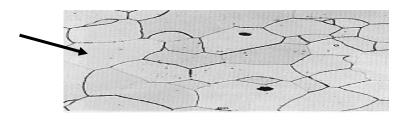
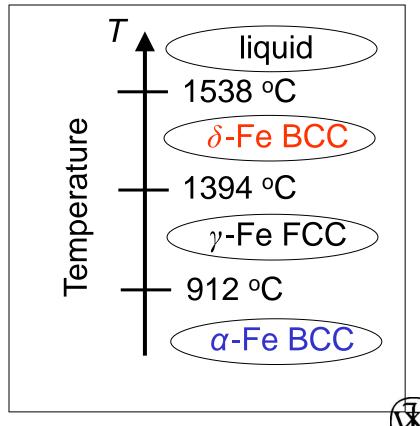


Fig. 5.20(b), Callister & Rethwisch 5e. [Fig. 4.15(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).]

Polymorphism/Allotropy


 Two or more distinct crystal structures for the same material (allotropy/polymorphism)

Titanium: α or β forms

Carbon:

diamond, graphite

Iron system

Polymorphic Forms of Carbon

Diamond

- tetrahedral bonding of carbon
 - hardest material known
 - very high thermal conductivity
- large single crystals gem stones
- small crystals used to grind/cut other materials
- diamond thin films
 - hard surface coatings used for cutting tools, medical devices, etc.

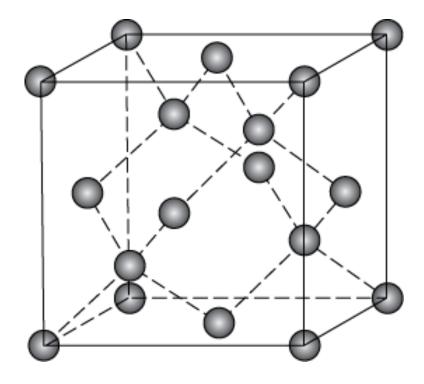
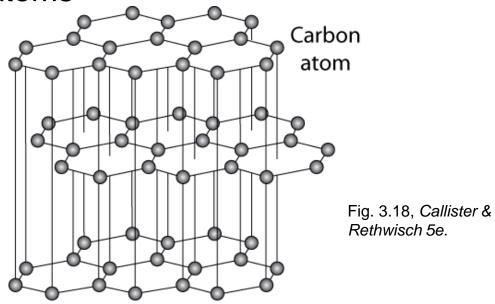



Fig. 3.17, Callister & Rethwisch 5e.

Polymorphic Forms of Carbon (cont)

Graphite

 layered structure – parallel hexagonal arrays of carbon atoms

- weak van der Waal's forces between layers
- planes slide easily over one another -- good lubricant